Perforin-independent CD8(+) T-cell-mediated cytotoxicity of alveolar epithelial cells is preferentially mediated by tumor necrosis factor-alpha: relative insensitivity to Fas ligand

Am J Respir Cell Mol Biol. 1999 May;20(5):849-58. doi: 10.1165/ajrcmb.20.5.3585.

Abstract

CD8(+) T cells appear to play an important pathophysiologic role in many inflammatory lung diseases. The primary effector function of this T-cell subset is cytolysis of virus-infected cells, and it is widely believed that there are two primary molecular mechanisms by which this occurs: the perforin/granzyme-mediated pathway of cytolysis, and the Fas ligand (FasL)-Fas (CD95/APO-1) pathway of induction of target-cell apoptosis. This conclusion is based primarily on data obtained with hematopoetic cell lines as target cells. There is also a growing body of evidence that Fas is involved in the transduction of apoptotic signals in a variety of inflammatory disease states, particularly involving the liver and the lung. In the study reported here we took advantage of a novel in vitro assay to directly assess the effector mechanisms employed in CD8(+) T-cell-mediated cytolysis of alveolar epithelial cells. We present evidence that FasL-induced, Fas-mediated apoptosis does not directly contribute to T-cell-mediated cytolysis of alveolar epithelial-derived cells, even though Fas is expressed and functional on these cells. We also demonstrated that the perforin-independent cytolytic activity of CD8(+) T cells against alveolar epithelial-derived cells is explained entirely by tumor necrosis factor-alpha (TNF-alpha), which is expressed on CD8(+) T cells. Furthermore, we show that bystander cytolysis of alveolar epithelial-derived cells by antiviral CD8(+) T cells is entirely perforin-independent. This activity is mediated exclusively by TNF-alpha. Both alveolar epithelial-derived cells and primary murine type II cells show susceptibility to apoptosis triggered by soluble TNF-alpha, without the need for transcriptional or translational inhibition. We also confirmed the resistance of alveolar type II cells to FasL in vivo by performing adoptive transfer of perforin-deficient antiviral CD8(+) T cells into transgenic mice expressing a target antigen in type II epithelial cells. Significant lung injury developed in the transgenic CD8(+) T-cell recipients, whether or not Fas was expressed in these animals. Furthermore, preincubation of the T cells with antibody to TNF-alpha completely abolished the injury. These results suggest that alveolar epithelial cells are relatively sensitive to T cell-triggered, TNF-alpha-mediated apoptosis, and resistant to apoptosis triggered by FasL. These observations may have important ramifications for understanding of the pathophysiology of interstitial and inflammatory lung diseases.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Apoptosis
  • CD8-Positive T-Lymphocytes / immunology*
  • Cell Line
  • Cytotoxicity, Immunologic*
  • Epithelial Cells / immunology
  • Fas Ligand Protein
  • Membrane Glycoproteins / physiology*
  • Mice
  • Mice, Inbred BALB C
  • Mice, Transgenic
  • Perforin
  • Pore Forming Cytotoxic Proteins
  • Pulmonary Alveoli / cytology
  • Pulmonary Alveoli / immunology*
  • Tumor Necrosis Factor-alpha / physiology*

Substances

  • Fas Ligand Protein
  • Fasl protein, mouse
  • Membrane Glycoproteins
  • Pore Forming Cytotoxic Proteins
  • Tumor Necrosis Factor-alpha
  • Perforin