Neuronal Ca2+ -activated Cl- channels--homing in on an elusive channel species

Prog Neurobiol. 2000 Feb;60(3):247-89. doi: 10.1016/s0301-0082(99)00027-1.

Abstract

Ca2+ -activated Cl- channels control electrical excitability in various peripheral and central populations of neurons. Ca2+ influx through voltage-gated or ligand-operated channels, as well as Ca2+ release from intracellular stores, have been shown to induce substantial Cl- conductances that determine the response to synaptic input, spike rate, and the receptor current of various kinds of neurons. In some neurons, Ca2+ -activated Cl- channels are localized in the dendritic membrane, and their contribution to signal processing depends on the local Cl- equilibrium potential which may differ considerably from those at the membranes of somata and axons. In olfactory sensory neurons, the channels are expressed in ciliary processes of dendritic endings where they serve to amplify the odor-induced receptor current. Recent biophysical studies of signal transduction in olfactory sensory neurons have yielded some insight into the functional properties of Ca2+ -activated Cl- channels expressed in the chemosensory membrane of these cells. Ion selectivity, channel conductance, and Ca2+ sensitivity have been investigated, and the role of the channels in the generation of receptor currents is well understood. However, further investigation of neuronal Ca2+ -activated Cl- channels will require information about the molecular structure of the channel protein, the regulation of channel activity by cellular signaling pathways, as well as the distribution of channels in different compartments of the neuron. To understand the physiological role of these channels it is also important to know the Cl- equilibrium potential in cells or in distinct cell compartments that express Ca2+ -activated Cl- channels. The state of knowledge about most of these aspects is considerably more advanced in non-neuronal cells, in particular in epithelia and smooth muscle. This review, therefore, collects results both from neuronal and from non-neuronal cells with the intent of facilitating research into Ca2+ -activated Cl- channels and their physiological functions in neurons.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Calcium / metabolism*
  • Chloride Channels / metabolism*
  • Neurons / metabolism*

Substances

  • Chloride Channels
  • Calcium