The mating consequences of sexual segregation within inflorescences of flowering plants

Proc Biol Sci. 2000 Feb 22;267(1441):315-20. doi: 10.1098/rspb.2000.1002.

Abstract

Many co-sexual plants segregate female and male function among flowers on an inflorescence through dichogamy or the production of unisexual flowers. Sexual segregation may reduce self-pollination among flowers within inflorescences (geitonogamy), thereby increasing the pollen available for export to other plants. To assess these complementary roles we manipulated the simultaneously hermaphroditic (adichogamous) flowers of Eichhornia paniculata to produce ten-flowered inflorescences with either female above male flowers (female/male inflorescences) or male/female inflorescences, which competed for mating opportunities with five-flowered adichogamous inflorescences. Because of the upward movement of bumble-bees, selfing increased upward in adichogamous inflorescences (overall female selfing rate s+/-s.e.=0.320+/-0.026). Female flowers of male/female inflorescences selfed less than flowers in corresponding positions in adichogamous inflorescences so s fell to 0.135+/-0.027. In contrast, all-female flowers of female/male inflorescences selfed similarly to upper flowers on adichogamous inflorescences, elevating s (0.437+/-0.043). During 1997, male/female inflorescences sired more outcrossed seeds than female/male or adichogamous inflorescences, whereas during 1994 flowers on male/female inflorescences received fewer visits than those of adichogamous inflorescences, reducing their outcross siring success. Hence, sexual segregation limits geitonogamy and enhances outcross siring success when it does not affect pollinator behaviour, illustrating the importance of both female and male function in inflorescence design.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bees
  • Crosses, Genetic
  • Plant Physiological Phenomena*
  • Plants / genetics
  • Pollen
  • Reproduction