Variability in the role of the gasbladder in fish audition

J Comp Physiol A. 2000 May;186(5):435-45. doi: 10.1007/s003590050443.

Abstract

The teleost gasbladder is believed to aid in fish audition by transferring pressure components of incoming sound to the inner ears. This idea is primarily based on both anatomical observations of the mechanical connection between the gasbladder and the ear, followed by physiological experiments by various researchers. The gasbladder movement has been modeled mathematically as a pulsating bubble. This study is extending the previous work on fish with a physical coupling of the gasbladder and ear by investigating hearing in two species (the blue gourami Trichogaster trichopterus, and the oyster toadfish Opsanus tau) without a mechanical linkage. An otophysan specialist (the goldfish Carassius auratus) with mechanical coupling, is used as the control. Audiograms were obtained with acoustically evoked potentials (e.g., auditory brainstem response) from intact fish and from the same individuals with their gasbladders deflated. In blue gourami and oyster toadfish, removal of gas did not significantly change thresholds, and evoked potentials had similar waveforms. In goldfish thresholds increased by 33-55 dB (frequency dependent) after deflation, and major changes in evoked potentials were observed. These results suggest that the gasbladder may not serve an auditory enhancement function in teleost fishes that lack mechanical coupling between the gasbladder and the inner ear.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Auditory Threshold / physiology
  • Body Weight
  • Evoked Potentials, Auditory, Brain Stem / physiology
  • Fishes / physiology*
  • Gases
  • Goldfish
  • Hearing / physiology*
  • Pressure

Substances

  • Gases