Sensory fibers of the pelvic nerve innervating the Rat's urinary bladder

J Neurophysiol. 2000 Oct;84(4):1924-33. doi: 10.1152/jn.2000.84.4.1924.

Abstract

Much attention has been given to the pelvic nerve afferent innervation of the urinary bladder; however, reports differ considerably in descriptions of afferent receptor types, their conduction velocities, and their potential roles in bladder reflexes and sensation. The present study was undertaken to do a relatively unbiased sampling of bladder afferent fibers of the pelvic nerve in adult female rats. The search stimulus for units to be studied was electrical stimulation of both the bladder nerves and the pelvic nerve. Single-unit activity of 100 L(6) dorsal root fibers, activated by both pelvic and bladder nerve stimulation, was analyzed. Sixty-five units had C-fiber and 35 units had Adelta-fiber conduction velocities. Receptive characteristics were established by direct mechanical stimulation, filling of the bladder with 0.9% NaCl at a physiological speed and by filling the bladder with solutions containing capsaicin, potassium, or turpentine oil. The majority (61) of these fibers were unambiguously excited by bladder filling with 0.9% NaCl and were classified as mechanoreceptors. All mechanoreceptors with receptive fields on the body of the bladder had low pressure thresholds (</=10 mmHg). Receptive fields of units with higher thresholds were near the ureterovesical junction, on the base of the bladder or could not be found. Neither thresholds nor suprathreshold responses could be related to conduction velocity. Bladder compliance and mechanoreceptor thresholds were influenced by the stage of the estrous cycle: both were lowest in proestrous rats and highest in metaestrous rats. Mechanoreceptors innervating the body of the bladder and the region near the ureterovesical junction showed two patterns of responsiveness to slow bladder filling. One group of units exhibited increasing activity with increasing pressure up to 40 mmHg, while the other group showed a peak in activity at pressures below 40 mmHg followed by a plateau or decrease in activity with increasing pressure. It is proposed that differences in stimulus transduction relate to the different response patterns. Thirty-nine units failed to respond to bladder filling. Eight of these were excited by intravesical potassium or capsaicin and were classified as chemoreceptors. The remaining 31 units were not excited by any stimulus tested. Chemoreceptors and unexcited units had both Adelta and C afferent fibers. We conclude that the pelvic nerve sensory innervation of the rat bladder is complex, may be sensitive to hormonal status, and that the properties of individual sensory receptors are not related in an obvious manner to the conduction velocity of their fibers.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Capsaicin / pharmacology
  • Chemoreceptor Cells / drug effects
  • Chemoreceptor Cells / physiology
  • Electrophysiology
  • Female
  • Mechanoreceptors / physiology
  • Nerve Fibers / physiology*
  • Neurons, Afferent / physiology
  • Potassium Chloride / pharmacology
  • Rats
  • Rats, Sprague-Dawley
  • Sensation / physiology*
  • Urinary Bladder / innervation*

Substances

  • Potassium Chloride
  • Capsaicin