Clockwise domain arrangement of the sodium channel revealed by (mu)-conotoxin (GIIIA) docking orientation

J Biol Chem. 2001 Apr 6;276(14):11072-7. doi: 10.1074/jbc.M010862200. Epub 2001 Jan 11.

Abstract

mu-Conotoxins (mu-CTXs) specifically inhibit Na(+) flux by occluding the pore of voltage-gated Na(+) channels. Although the three-dimensional structures of mu-CTXs are well defined, the molecular configuration of the channel receptor is much less certain; even the fundamental question of whether the four homologous Na(+) channel domains are arranged in a clockwise or counter-clockwise configuration remains unanswered. Residues Asp(762) and Glu(765) from domain II and Asp(1241) from domain III of rat skeletal muscle Na(+) channels are known to be critical for mu-CTX binding. We probed toxin-channel interactions by determining the potency of block of wild-type, D762K, E765K, and D1241C channels by wild-type and point-mutated mu-CTXs (R1A, Q14D, K11A, K16A, and R19A). Individual interaction energies for different toxin-channel pairs were quantified from the half-blocking concentrations using mutant cycle analysis. We find that Asp(762) and Glu(765) interact strongly with Gln(14) and Arg(19) but not Arg(1) and that Asp(1241) is tightly coupled to Lys(16) but not Arg(1) or Lys(11). These newly identified toxin-channel interactions within adjacent domains, interpreted in light of the known asymmetric toxin structure, fix the orientation of the toxin with respect to the channel and reveal that the four internal domains of Na(+) channels are arranged in a clockwise configuration as viewed from the extracellular surface.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cell Line
  • Conotoxins*
  • Point Mutation
  • Protein Conformation
  • Sodium Channels / chemistry*
  • Sodium Channels / genetics
  • Sodium Channels / metabolism

Substances

  • Conotoxins
  • Sodium Channels