Polycystin: new aspects of structure, function, and regulation

J Am Soc Nephrol. 2001 Apr;12(4):834-845. doi: 10.1681/ASN.V124834.

Abstract

Polycystin-1 is a modular membrane protein with a long extracellular N-terminal portion that bears several ligand-binding domains, 11 transmembrane domains, and a > or =200 amino acid intracellular C-terminal portion with several phosphorylation signaling sites. Polycystin-1 is highly expressed in the basal membranes of ureteric bud epithelia during early development of the metanephric kidney, and disruption of the PKD1 gene in mice leads to cystic kidneys and embryonic or perinatal death. It is proposed that polycystin-1 functions as a matrix receptor to link the extracellular matrix to the actin cytoskeleton via focal adhesion proteins. Co-localization, co-sedimentation, and co-immunoprecipitation studies show that polycystin-1 forms multiprotein complexes with alpha2beta1-integrin, talin, vinculin, paxillin, p130cas, focal adhesion kinase, and c-src in normal human fetal collecting tubules and sub-confluent epithelial cultures. In normal adult kidneys and confluent epithelial cultures, polycystin-1 is downregulated and forms complexes with the cell-cell adherens junction proteins E-cadherin and beta-, gamma-, and alpha-catenin. Polycystin-1 activation at the cell membrane leads to intracellular signaling via phosphorylation through the c-Jun terminal kinase and wnt pathways leading to activation of AP-1 and TCF/LEF-dependent genes, respectively. The C-terminal of polcystin-1 has been shown to be phosphorylated by c-src at Y4237, by protein kinase A at S4252, and by focal adhesion kinase and protein kinase X at yet-to-be identified residues. Inhibition of tyrosine phosphorylation or increased cellular calcium increases polycystin-1 focal adhesion complexes versus polycystin-1 adherens junction complexes, whereas disruption of the actin cytoskeleton dissociates all polycystin-1 complexes. Genetic evidence suggests that PKD1, PKD2, NPHP1, and tensin are in the same pathway.

Publication types

  • Review

MeSH terms

  • Animals
  • Humans
  • Membrane Proteins / chemistry*
  • Membrane Proteins / physiology*
  • Proteins / chemistry*
  • Proteins / physiology*
  • Structure-Activity Relationship
  • TRPP Cation Channels

Substances

  • Membrane Proteins
  • Proteins
  • TRPP Cation Channels
  • polycystic kidney disease 1 protein
  • polycystic kidney disease 2 protein