Cell Type-specific Effects of the Neural Adhesion Molecules L1 and N-CAM on Diverse Second Messenger Systems

Eur J Neurosci. 1992;4(10):896-909. doi: 10.1111/j.1460-9568.1992.tb00116.x.

Abstract

We have previously shown that the neural adhesion molecules L1 and N-CAM influence second messenger systems when triggered with specific antibodies at the surface of the phaeochromocytoma PC12 cell line (Schuch et al., Neuron, 3, 13 - 20, 1989). To determine whether the two molecules are linked to the same intracellular signalling cascades, independent of the cell type expressing them, or whether different neural cell types respond with different signal transduction mechanisms, we have investigated the effects of antibodies to L1 and N-CAM, and the isolated molecules themselves, on second messenger systems in different neural cell types. We have investigated cultures of cerebellar and dorsal root ganglion neurons and transformed Schwann cells and related these results to those obtained with the PC12 cell line. Here we show that addition of L1 and N-CAM antibodies and the isolated molecules themselves elicit cell type-specific responses that can be modulated by the substrate on which the cells are maintained. Depending on the cell type, cells respond to the triggering of L1 and N-CAM with antibodies, or addition of the purified molecules, by either up-regulation or down-regulation of inositol phosphate turnover, by a rise in intracellular Ca2+ levels dependent on or independent of the opening of voltage-gated Ca2+ channels, or by an increase or decrease in intracellular pH. Moreover, cerebellar neurons expressing N-CAM respond to addition N-CAM, but not to N-CAM antibodies, in contrast to the other neural cell types studied, which respond to both triggers. Furthermore, cerebellar neurons were the only cells to show a rise in cAMP levels in response to any of the ligands tested. This stimulation of cAMP production by L1 antibodies depended on the cross-linking of L1 molecules at the cell surface, whereas the other responses did not depend on clustering of L1. Simultaneous addition of L1 and N-CAM antibodies either elicited an additive or more than additive effect on the intracellular responses which, for cerebellar neurons, depends on the substrate on which the cells are maintained. These observations indicate that L1 and N-CAM or their antibodies activate cell type-specific intracellular signalling systems and that the two molecules can act interdependently or independently of each other.