Double Fertilization in Gnetum gnemon: The Relationship between the Cell Cycle and Sexual Reproduction

Plant Cell. 1995 Dec;7(12):1975-1988. doi: 10.1105/tpc.7.12.1975.

Abstract

Gnetum gnemon, a nonflowering seed plant and member of the Gnetales, expresses a rudimentary pattern of double fertilization that results in the formation of two zygotes per pollen tube. The process of double fertilization in G. gnemon was examined with light and fluorescence microscopy, and the DNA content of various nuclei involved in sexual reproduction was quantified with 4[prime],6-diamidino-2-phenylindole microspectrofluorometry.Male and female gamete nuclei pass through the synthesis phase of the cell cycle and increase their DNA content from 1C to 2C before fertilization. Each of the two zygotes found in association with a pollen tube is diploid and contains the 4C quantity of DNA at inception. Based on these results as well as previous studies of nuclear DNA content in plant sperm, eggs, and zygotes, three fundamental and distinct patterns of gamete karyogamy among seed plants can be circumscribed: (1) G1 karyogamy, in which male and female gametes contain the 1C quantity of DNA throughout karyogamy and the zygote undergoes DNA replication; (2) S-phase karyogamy, in which gamete nuclei initiate fusion at 1C but pass through the S phase of the cell cycle before completely fusing; and (3) G2 karyogamy, in which male and female gamete nuclei pass through the S phase of the cell cycle before the onset of fertilization. Our results show definitively a pattern of G2 karyogamy in G. gnemon.