The E2F-1 transcription factor is negatively regulated by its interaction with the MDMX protein

J Cell Biochem. 2003 Feb 15;88(3):557-68. doi: 10.1002/jcb.10318.

Abstract

Several proteins with important roles in oncogenesis have been shown to regulate the function of the E2F-1 transcription factor, which is known to activate the expression of genes required for proliferation and apoptosis. Here we identify the MDMX oncoprotein as an E2F-1-binding factor, from a yeast-two hybrid screen using a portion of the E2F-1 protein as "bait." We demonstrate that the region within MDMX needed for the E2F-1:MDMX interaction is located in the central part of the protein, C-terminal of the p53-binding domain. The region within E2F-1 needed for this association is adjacent to the DNA binding domain. Further, when expressed in vivo or in vitro the MDMX protein migrates as two isoforms on SDS-PAGE, the faster migrating isoform having the stronger affinity for the E2F-1 proteins. It appears that this interaction reduces the ability of E2F-1 to bind DNA. Expression of MDMX along with E2F-1 and Dp-1 in Saos2 cells reduces the ability of E2F-1 to bind to its consensus DNA sequence, without altering E2F-1 protein levels. These data indicate that the MDMX protein is capable of associating with E2F-1 and negatively regulating its DNA binding ability.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cell Cycle Proteins*
  • Cell Line
  • DNA-Binding Proteins / genetics
  • DNA-Binding Proteins / metabolism*
  • E2F Transcription Factors
  • E2F1 Transcription Factor
  • Gene Expression Regulation*
  • Humans
  • Nuclear Proteins
  • Protein Binding
  • Protein Isoforms / chemistry
  • Protein Isoforms / genetics
  • Protein Isoforms / metabolism
  • Protein Structure, Tertiary
  • Proto-Oncogene Proteins / chemistry
  • Proto-Oncogene Proteins / genetics
  • Proto-Oncogene Proteins / metabolism*
  • Recombinant Fusion Proteins / genetics
  • Recombinant Fusion Proteins / metabolism
  • Retinoblastoma Protein / metabolism
  • Transcription Factors / genetics
  • Transcription Factors / metabolism*
  • Two-Hybrid System Techniques

Substances

  • Cell Cycle Proteins
  • DNA-Binding Proteins
  • E2F Transcription Factors
  • E2F1 Transcription Factor
  • E2F1 protein, human
  • MDM4 protein, human
  • Nuclear Proteins
  • Protein Isoforms
  • Proto-Oncogene Proteins
  • Recombinant Fusion Proteins
  • Retinoblastoma Protein
  • Transcription Factors