Bicarbonate actions on flagellar and Ca2+ -channel responses: initial events in sperm activation

Development. 2003 Apr;130(7):1317-26. doi: 10.1242/dev.00353.

Abstract

At mating, mammalian sperm are diluted in the male and female reproductive fluids, which brings contact with HCO(3)(-) and initiates several cellular responses. We have identified and studied two of the most rapid of these responses. Stop-motion imaging and flagellar waveform analysis show that for mouse epididymal sperm in vitro, the resting flagellar beat frequency is 2-3 Hz at 22-25 degrees C. Local perfusion with HCO(3)(-) produces a robust, reversible acceleration to 7 Hz or more. At 15 mM the action of HCO(3)(-) begins within 5 seconds and is near-maximal by 30 seconds. The half-times of response are 8.8+/-0.2 seconds at 15 mM HCO(3)(-) and 17.5+/-0.4 seconds at 1 mM HCO(3)(-). Removal of external HCO(3)(-) allows a slow return to basal beat frequency over approximately 10 minutes. Increases in beat symmetry accompany the accelerating action of HCO(3)(-). As in our past work, HCO(3)(-) also facilitates opening of voltagegated Ca(2+) channels, increasing the depolarization-evoked rate of rise of intracellular Ca(2+) concentration by more than fivefold. This action also is detectable at 1 mM HCO(3)(-) and occurs with an apparent halftime of approximately 60 seconds at 15 mM HCO(3)(-). The dual actions of HCO(3)(-) respond similarly to pharmacological intervention. Thus, the phosphodiesterase inhibitor IBMX promotes the actions of HCO(3)(-) on flagellar and channel function, and the protein kinase A inhibitor H89 blocks these actions. In addition, a 30 minute incubation with 60 micro M cAMP acetoxylmethyl ester increases flagellar beat frequency to nearly 7 Hz and increases the evoked rates of rise of intracellular Ca(2+) concentration from 17+/-4 to 41+/-6 nM second(-1). However, treatment with several other analogs of cAMP produces only scant evidence of the expected mimicry or blockade of the actions of HCO(3)(-), perhaps as a consequence of limited permeation. Our findings indicate a requirement for cAMP-mediated protein phosphorylation in the enhancement of flagellar and channel functions that HCO(3)(-) produces during sperm activation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Bicarbonates / metabolism*
  • Calcium / metabolism
  • Calcium Channels / metabolism*
  • Cell Movement / physiology
  • Female
  • Flagella / metabolism*
  • Male
  • Mice
  • Spermatozoa / metabolism*

Substances

  • Bicarbonates
  • Calcium Channels
  • Calcium