Intracellular zinc fluxes associated with apoptosis in growth plate chondrocytes

J Cell Biochem. 2003 Apr 1;88(5):954-69. doi: 10.1002/jcb.10446.

Abstract

Matrix vesicles released by epiphyseal growth plate chondrocytes are known to contain a significant quantity of labile Zn(2+). Zonal analysis of chicken metatarsal bones showed that the resting/proliferative region of the growth plate contained high levels of Zn(2+) with significantly lower levels in the hypertrophic cartilage suggesting a loss of cellular Zn(2+) as the chondrocytes mature. Intracellular labile Zn(2+) was measured in primary cultures of growth plate chondrocytes by assay with the fluorescent Zn-chelator toluenesulfonamidoquinoline (TSQ) and imaged by multi-photon laser scanning microscopy (MPLSM) with the TSQ derivative zinquin. Short-term exposure to Zn(2+), both in the presence and absence of pyrithione resulted in significant increases in cytosolic Zn(2+). Treatment with the membrane-permeant Zn(2+) chelator TPEN rapidly reduced the levels of labile Zn(2+) and triggered apoptosis. Cytosolic Zn(2+) levels were significantly reduced following 24-h incubations with known inducers of chondrocyte apoptosis. The loss of intracellular Zn(2+) was accompanied by a significant reduction in the cytosolic metal-binding protein metallothionein. Examination of Zn(2+)-treated cells with MPLSM showed uniformly higher zinquin fluorescence. Treatment of Zn(2+)-loaded cells with TPEN quenched zinquin fluorescence confirming that the observed fluorescence in chondrocytes is due to the presence of intracellular Zn(2+). A dose-dependent increase in zinquin fluorescence was observed in cells treated with a range of Zn(2+) concentrations. Short-term treatment of cultured chondrocytes with apoptosis-inducing chemicals resulted in transient increases in intracellular labile Zn(2+). These results indicate that Zn(2+) is mobilized from intracellular binding sites in the early stages of chondrocyte apoptosis and is subsequently lost from the cells. The early mobilization of Zn(2+) provides a mechanism for its movement to matrix vesicles and the extracellular matrix.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Apoptosis / physiology*
  • Cations, Divalent
  • Cells, Cultured
  • Chickens
  • Chondrocytes / chemistry
  • Chondrocytes / metabolism*
  • Fluorescent Dyes
  • Growth Plate / chemistry
  • Growth Plate / metabolism*
  • Metatarsal Bones / growth & development
  • Microscopy, Confocal
  • Quinolones
  • Tibia / growth & development
  • Tosyl Compounds
  • Zinc / analysis
  • Zinc / metabolism*

Substances

  • Cations, Divalent
  • Fluorescent Dyes
  • Quinolones
  • Tosyl Compounds
  • Zinc
  • zinquin