Trafficking of the ErbB receptors and its influence on signaling

Exp Cell Res. 2003 Mar 10;284(1):78-88. doi: 10.1016/s0014-4827(03)00002-8.

Abstract

Although members of the ErbB receptor family are found predominantly at the cell surface, these receptors undergo constant cycling between the plasma membrane and the endosomal compartment. In the absence of an activating ligand, these receptors are slowly internalized (t(1/2) approximately 30 min) but are quickly recycled. The constitutive degradation rate of the epidermal growth factor (EGF) receptor (EGFR) is slower than other ErbB family members and only the EGFR appears to alter its trafficking pattern in response to ligand binding. This altered pattern is characterized by accelerated internalization and enhanced lysosomal targeting. Ligand-regulated trafficking of the EGFR is mediated by a series of motifs distributed through the cytoplasmic domain of the receptor that are exposed by a combination of activation-mediated conformation changes and the binding of proteins such as Grb2. As a consequence of induced internalization, most EGFR signaling occurs within endosomes whereas signaling by the other members of the ErbB family appear to be generated predominantly from the cell surface. Overexpression of ErbB family members can disrupt normal receptor trafficking by driving heterodimerization of receptors with disparate trafficking patterns. Because different ErbB receptor substrates are localized in different cellular compartments, disrupted trafficking could be an important factor in the altered signaling patterns observed as a consequence of receptor overexpression.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Biological Transport
  • Epidermal Growth Factor / metabolism
  • ErbB Receptors / metabolism*
  • Humans
  • Ligands
  • Phosphorylation
  • Signal Transduction*

Substances

  • Ligands
  • Epidermal Growth Factor
  • ErbB Receptors