Equilibrium distribution of mutators in the single fitness peak model

Phys Rev Lett. 2003 Sep 26;91(13):138105. doi: 10.1103/PhysRevLett.91.138105. Epub 2003 Sep 26.

Abstract

This Letter develops an analytically tractable model for determining the equilibrium distribution of mismatch repair deficient strains in unicellular populations. The approach is based on the single fitness peak model, which has been used in Eigen's quasispecies equations in order to understand various aspects of evolutionary dynamics. As with the quasispecies model, our model for mutator-nonmutator equilibrium undergoes a phase transition in the limit of infinite sequence length. This "repair catas-trophe" occurs at a critical repair error probability of epsilon(r)=L(via)/L, where L(via) denotes the length of the genome controlling viability, while L denotes the overall length of the genome. The repair catastrophe therefore occurs when the repair error probability exceeds the fraction of deleterious mutations. Our model also gives a quantitative estimate for the equilibrium fraction of mutators in Escherichia coli.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Base Pair Mismatch
  • DNA Repair*
  • Escherichia coli / genetics
  • Genome
  • Models, Genetic*
  • Mutagenesis*