The evolution of dip-pen nanolithography

Angew Chem Int Ed Engl. 2004 Jan;43(1):30-45. doi: 10.1002/anie.200300608.

Abstract

The ability to tailor the chemical composition and structure of a surface on the 1-100 nm length scale is important to researchers studying topics ranging from electronic conduction, to catalysis, to biological recognition in nanoscale systems. Dip-pen nanolithography (DPN) is a new scanning-probe based direct-write tool for generating such surface-patterned chemical functionality on the sub-100 nm length-scale, and it is a technique that is accessible to any researcher who can use an atomic force microscope. This article introduces DPN and reviews the rapid growth of the field of DPN-related research over the past few years. Topics covered range from the development of new classes of DPN-compatible chemistry, to experimental and theoretical advances in the understanding of the processes controlling tip-substrate ink transport, to the implementation of micro-electro-mechanical system (MEMS) based strategies for parallel DPN applications.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Nanotechnology*
  • Surface Properties