Comparison of different biogenic matrices seeded with cultured Schwann cells for bridging peripheral nerve defects

Neurol Res. 2004 Mar;26(2):167-73. doi: 10.1179/016164104225013842.

Abstract

Tissue-engineering as laboratory based alternative to human autografts and allografts provides "custom made organs" cultured from patient's material. To overcome the limited donor nerve availability different biologic nerve grafts were engineered in a rat sciatic nerve model: cultured isogenic Schwann cells were implanted into acellular autologous matrices: veins, muscles, nerves, and epineurium tubes. Autologous nerve grafts, and the respective biogenic material without Schwann cells served as control. After 6 weeks regeneration was assessed clinically, histologically and morphometrically. The PCR analysis showed that the implanted Schwann cells remain within all the grafts. A good regeneration was noted in the muscle-Schwann cell-group, while regeneration quality in the other groups (with or without Schwann cells) was impaired. The muscle-Schwann cell graft showed a systematic and organized regeneration including a proper orientation of regenerated fibers. All venous and epineurium grafts had a more disorganized regeneration. Seemingly, the lack of endoneural tube like structures in vein grafts lead to impaired regeneration. And, apparently, the beneficial effects of implanted Schwann cells into a large luminal structure can only be demonstrated to a limited extent if endoneural like structures are lacking. A tube offers less area for Schwann cell adhesion and it is more likely to collapse. This underlines the role of the basal lamina, or at least an inner structure acting as scaffold in axonal regeneration. Although the conventional nerve graft remains the gold standard, the implantation of Schwann cells into an acellular muscle provides a biogenic graft with basal lamina tubes as pathway for regenerating axons and the positive effects of Schwann cells producing neurotrophic and neurotropic factors, and thus, supporting axonal regeneration.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biocompatible Materials / pharmacology*
  • Cells, Cultured
  • Extracellular Matrix / transplantation
  • Female
  • Male
  • Nerve Regeneration / drug effects
  • Nerve Regeneration / physiology
  • Peripheral Nerve Injuries
  • Peripheral Nerves / drug effects
  • Peripheral Nerves / physiology*
  • Peripheral Nerves / transplantation*
  • Rats
  • Rats, Wistar
  • Schwann Cells / transplantation*
  • Transplants*

Substances

  • Biocompatible Materials