Differential displacement of the human soleus and medial gastrocnemius aponeuroses during isometric plantar flexor contractions in vivo

J Appl Physiol (1985). 2004 Nov;97(5):1908-14. doi: 10.1152/japplphysiol.00084.2004. Epub 2004 Jun 25.

Abstract

The human triceps surae muscle-tendon complex is a unique structure with three separate muscle compartments that merge via their aponeuroses into the Achilles tendon. The mechanical function and properties of these structures during muscular contraction are not well understood. The purpose of the study was to investigate the extent to which differential displacement occurs between the aponeuroses of the medial gastrocnemius (MG) and soleus (Sol) muscles during plantar flexion. Eight subjects (mean +/- SD; age 30 +/- 7 yr, body mass 76.8 +/- 5.5 kg, height 1.83 +/- 0.06 m) performed maximal isometric ramp contractions with the plantar flexor muscles. The experiment was performed in two positions: position 1, in which the knee joint was maximally extended, and position 2, in which the knee joint was maximally flexed (125 degrees ). Plantarflexion moment was assessed with a strain gauge load cell, and the corresponding displacement of the MG and Sol aponeuroses was measured by ultrasonography. Differential shear displacement of the aponeurosis was quantified by subtracting displacement of Sol from that of MG. Maximal plantar flexion moment was 36% greater in position 1 than in position 2 (132 +/- 20 vs. 97 +/- 11 N.m). In position 1, the displacement of the MG aponeurosis at maximal force exceeded that of the Sol (12.6 +/- 1.7 vs. 8.9 +/- 1.5 mm), whereas in position 2 displacement of the Sol was greater than displacement of the MG (9.6 +/- 1.0 vs. 7.9 +/- 1.2 mm). The amount and "direction" of shear between the aponeuroses differed significantly between the two positions across the entire range of contraction, indicating that the Achilles tendon may be exposed to intratendinous shear and stress gradients during human locomotion.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Biomechanical Phenomena
  • Foot*
  • Humans
  • Isometric Contraction / physiology*
  • Knee / physiology
  • Leg*
  • Male
  • Muscle, Skeletal / physiology*
  • Posture / physiology
  • Stress, Mechanical
  • Tendons / physiology*