Single-molecule magnets of ferrous cubes: structurally controlled magnetic anisotropy

J Am Chem Soc. 2004 Jul 21;126(28):8805-12. doi: 10.1021/ja0487933.

Abstract

Tetranuclear Fe(II) cubic complexes were synthesized with Schiff base ligands bridging the Fe(II) centers. X-ray structural analyses of six ferrous cubes, [Fe4(sap)4(MeOH)4].2H2O (1), [Fe4(5-Br-sap)4(MeOH)4] (2), [Fe4(3-MeO-sap)4(MeOH)4].2MeOH (3), [Fe4(sae)4(MeOH)4] (4), [Fe4(5-Br-sae)4(MeOH)4].MeOH (5), and [Fe4(3,5-Cl2-sae)4(MeOH)4] (6) (R-sap and R-sae were prepared by condensation of salicylaldehyde derivatives with aminopropyl alcohol and aminoethyl alcohol, respectively) were performed, and their magnetic properties were studied. In 1-6, the alkoxo groups of the Schiff base ligands bridge four Fe(II) ions in a mu3-mode forming [Fe4O4] cubic cores. The Fe(II) ions in the cubes have tetragonally elongated octahedral coordination geometries, and the equatorial coordination bond lengths in 4-6 are shorter than those in 1-3. Dc magnetic susceptibility measurements for 1-6 revealed that intramolecular ferromagnetic interactions are operative to lead an S = 8 spin ground state. Analyses of the magnetization data at 1.8 K gave the axial zero-field splitting parameters (D) of +0.81, +0.80, +1.15, -0.64, -0.66, and -0.67 cm(-1) for 1-6, respectively. Ac magnetic susceptibility measurements for 4-6 showed both frequency dependent in- and out-of-phase signals, while 1-3 did not show out-of-phase signals down to 1.8 K, meaning 4-6 are single-molecule magnets (SMMs). The energy barriers to flip the spin between up- and down-spin were estimated to 28.4, 30.5, and 26.2 K, respectively, for 4-6. The bridging ligands R-sap2- in 1-3 and R-sae2- in 4-6 form six- and five-membered chelate rings, respectively, which cause different steric strain and Jahn-Teller distortions at Fe(II) centers. The sign of the D value was discussed by using angular overlap model (AOM) calculations for irons with different coordination geometry.