Survival of Shewanella oneidensis MR-1 after UV radiation exposure

Appl Environ Microbiol. 2004 Nov;70(11):6435-43. doi: 10.1128/AEM.70.11.6435-6443.2004.

Abstract

We systematically investigated the physiological response as well as DNA damage repair and damage tolerance in Shewanella oneidensis MR-1 following UVC, UVB, UVA, and solar light exposure. MR-1 showed the highest UVC sensitivity among Shewanella strains examined, with D37 and D10 values of 5.6 and 16.5% of Escherichia coli K-12 values. Stationary cells did not show an increased UVA resistance compared to exponential-phase cells; instead, they were more sensitive at high UVA dose. UVA-irradiated MR-1 survived better on tryptic soy agar than Luria-Bertani plates regardless of the growth stage. A 20% survival rate of MR-1 was observed following doses of 3.3 J of UVC m(-2), 568 J of UVB m(-2), 25 kJ of UVA m(-2), and 558 J of solar UVB m(-2), respectively. Photoreactivation conferred an increased survival rate to MR-1 of as much as 177- to 365-fold, 11- to 23-fold, and 3- to 10-fold following UVC, UVB, and solar light irradiation, respectively. A significant UV mutability to rifampin resistance was detected in both UVC- and UVB-treated samples, with the mutation frequency in the range of 10(-5) to 10(-6). Unlike in E. coli, the expression levels of the nucleotide excision repair (NER) component genes uvrA, uvrB, and uvrD were not damage inducible in MR-1. Complementation of Pseudomonas aeruginosa UA11079 (uvrA deficient) with uvrA of MR-1 increased the UVC survival of this strain by more than 3 orders of magnitude. Loss of damage inducibility of the NER system appears to contribute to the high sensitivity of this bacterium to UVR as well as to other DNA-damaging agents.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adenosine Triphosphatases / genetics
  • Adenosine Triphosphatases / metabolism
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism
  • Base Sequence
  • Culture Media
  • DNA Damage
  • DNA Repair
  • DNA, Complementary / genetics
  • DNA-Binding Proteins / genetics
  • DNA-Binding Proteins / metabolism
  • Escherichia coli Proteins / genetics
  • Escherichia coli Proteins / metabolism
  • Molecular Sequence Data
  • Oligonucleotide Array Sequence Analysis
  • Shewanella / genetics
  • Shewanella / growth & development*
  • Shewanella / radiation effects*
  • Sunlight*
  • Ultraviolet Rays*

Substances

  • Bacterial Proteins
  • Culture Media
  • DNA, Complementary
  • DNA-Binding Proteins
  • Escherichia coli Proteins
  • UvrA protein, E coli
  • Adenosine Triphosphatases