beta-Arrestin2 regulates the differential response of cortical and trabecular bone to intermittent PTH in female mice

J Bone Miner Res. 2005 Apr;20(4):635-43. doi: 10.1359/JBMR.041204. Epub 2004 Dec 6.

Abstract

Cytoplasmic arrestins regulate PTH signaling in vitro. We show that female beta-arrestin2(-/-) mice have decreased bone mass and altered bone architecture. The effects of intermittent PTH administration on bone microarchitecture differed in beta-arrestin2(-/-) and wildtype mice. These data indicate that arrestin-mediated regulation of intracellular signaling contributes to the differential effects of PTH at endosteal and periosteal bone surfaces.

Introduction: The effects of PTH differ at endosteal and periosteal surfaces, suggesting that PTH activity in these compartments may depend on some yet unidentified mechanism(s) of regulation. The action of PTH in bone is mediated primarily by intracellular cAMP, and the cytoplasmic molecule beta-arrestin2 plays a central role in this signaling regulation. Thus, we hypothesized that arrestins would modulate the effects of PTH on bone in vivo.

Materials and methods: We used pDXA, muCT, histomorphometry, and serum markers of bone turnover to assess the skeletal response to intermittent PTH (0, 20, 40, or 80 mug/kg/day) in adult female mice null for beta-arrestin2 (beta-arr2(-/-)) and wildtype (WT) littermates (7-11/group).

Results and conclusions: beta-arr2(-/-) mice had significantly lower total body BMD, trabecular bone volume fraction (BV/TV), and femoral cross-sectional area compared with WT. In WT females, PTH increased total body BMD, trabecular bone parameters, and cortical thickness, with a trend toward decreased midfemoral medullary area. In beta-arr2(-/-) mice, PTH not only improved total body BMD, trabecular bone architecture, and cortical thickness, but also dose-dependently increased femoral cross-sectional area and medullary area. Histomorphometry showed that PTH-stimulated periosteal bone formation was 2-fold higher in beta-arr2(-/-) compared with WT. Osteocalcin levels were significantly lower in beta-arr2(-/-) mice, but increased dose-dependently with PTH in both beta-arr2(-/-) and WT. In contrast, whereas the resorption marker TRACP5B increased dose-dependently in WT, 20-80 mug/kg/day of PTH was equipotent with regard to stimulation of TRACP5B in beta-arr2(-/-). In summary, beta-arrestin2 plays an important role in bone mass acquisition and remodeling. In estrogen-replete female mice, the ability of intermittent PTH to stimulate periosteal bone apposition and endosteal resorption is inhibited by arrestins. We therefore infer that arrestin-mediated regulation of intracellular signaling contributes to the differential effects of PTH on cancellous and cortical bone.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Arrestins / genetics
  • Arrestins / physiology*
  • Biomarkers / blood
  • Bone Density / drug effects
  • Bone and Bones / drug effects*
  • Female
  • Femur / cytology
  • Femur / drug effects
  • Femur / metabolism
  • Mice
  • Mice, Knockout
  • Parathyroid Hormone / metabolism
  • Parathyroid Hormone / pharmacology*
  • Signal Transduction
  • beta-Arrestin 2
  • beta-Arrestins

Substances

  • Arrb2 protein, mouse
  • Arrestins
  • Biomarkers
  • Parathyroid Hormone
  • beta-Arrestin 2
  • beta-Arrestins