Life history biology of early land plants: deciphering the gametophyte phase

Proc Natl Acad Sci U S A. 2005 Apr 19;102(16):5892-7. doi: 10.1073/pnas.0501985102. Epub 2005 Apr 4.

Abstract

The ca. 400-million-year-old Rhynie chert biota represents a benchmark for studies of early terrestrial ecosystems. The exquisite preservation of the organisms documents an ancient biodiversity that also includes various levels of biological interaction. Absent from the picture until recently has been detailed information about the development of the gametophyte phase and the alternation of generations of the macroplants in this ecosystem. Here, we trace the development of the gametophyte phase of Aglaophyton, an early land plant with an unusual complement of structural and morphological characters. Mature gametophytes consist of a fleshy protocorm attached to the substrate by basal rhizoids; arising from the upper surface are one to several upright gametangiophores bearing multiple gametangia. Stomata are present on the upper surface of the protocorm and gametangiophore, and endomycorrhizal fungi extend throughout the gametophyte. Gametophytes are unisexual, producing either antheridiophores or archegoniophores. There is no evidence that gametophytes later become hermaphroditic. The sexual dimorphism of the Rhynie chert gametophytes is inconsistent with theoretical ideas about the haploid phase of early land plants. The gametophyte phase of early land plants can now be considered within an ecological and evolutionary framework that, in turn, can be used to develop hypotheses about some aspects of the population dynamics and growth of these early land plants.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Biodiversity
  • Biological Evolution
  • Ecosystem*
  • Fossils
  • Gametogenesis*
  • Paleontology
  • Plant Physiological Phenomena*
  • Plants* / anatomy & histology
  • Scotland