Role of cytochrome b5 in catalysis by cytochrome P450 2B4

Biochem Biophys Res Commun. 2005 Dec 9;338(1):499-506. doi: 10.1016/j.bbrc.2005.09.022. Epub 2005 Sep 15.

Abstract

Cytochrome b5 has been shown to stimulate, inhibit or have no effect on catalysis by P450 cytochromes. Its action is known to depend on the isozyme of cytochrome P450, the substrate, and experimental conditions. Cytochrome P450 2B4 (CYP 2B4) has been used in our laboratory as a model isozyme to study the role of cytochrome b5 in cytochrome P450 catalysis using two substrates, methoxyflurane and benzphetamine. One substrate is the volatile anesthetic, methoxyflurane, whose metabolism is consistently markedly stimulated by cytochrome b5. The other is benzphetamine, whose metabolism is minimally modified by cytochrome b5. Determination of the stoichiometry of the metabolism of both substrates showed that the amount of product formed is the net result of the simultaneous stimulatory and inhibitory actions of cytochrome b5 on catalysis. Site-directed mutagenesis studies revealed that both cytochrome b5 and cytochrome P450 reductase interact with cytochrome P450 on its proximal surface on overlapping but non-identical binding sites. Comparison of the rate of reduction of oxyferrous CYP 2B4 and the rate of substrate oxidation by cyt b5 and reductase with stopped-flow spectrophotometric and rapid chemical quench experiments has demonstrated that although cytochrome b5 and reductase reduce oxyferrous CYP 2B4 at the same rate, substrate oxidation proceeds more slowly in the presence of the reductase.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Aryl Hydrocarbon Hydroxylases / chemistry*
  • Aryl Hydrocarbon Hydroxylases / physiology
  • Catalysis
  • Cytochrome P450 Family 2
  • Cytochromes b5 / physiology*
  • Humans

Substances

  • Cytochromes b5
  • Aryl Hydrocarbon Hydroxylases
  • Cytochrome P450 Family 2
  • cytochrome P-450 CYP2B4 (rabbit)