Feeding in Atractaspis (Serpentes: Atractaspididae): a study in conflicting functional constraints

Zoology (Jena). 2003;106(1):43-61. doi: 10.1078/0944-2006-00088.

Abstract

African fossorial colubroid snakes of the genus Atractaspis have relatively long fangs on short maxillae, a gap separating the pterygoid and palatine bones, a toothless pterygoid, and a snout tightly attached to the rest of the skull. They envenomate prey with a unilateral backward stab of one fang projected from a closed mouth. We combined structural reanalysis of the feeding apparatus, video records of prey envenomation and transport, and manipulations of live and dead Atractaspis to determine how structure relates to function in this unusual genus of snakes. Unilateral fang use in Atractaspis is similar to unilateral slashing envenomation by some rear-fanged snakes, but Atractaspis show no maxillary movement during prey transport. Loss of pterygoid teeth and maxillary movement during transport resulted in the inability to perform. 'pterygoid walk' prey transport. Atractaspis transport prey through the oral cavity using movement cycles in which mandibular adduction, anterior trunk compression, and ventral flexion of the head alternate with mandibular abduction and extension of head and anterior trunk over the prey. Inefficiencies in manipulation and early transport of prey are offset by adaptability of the envenomating system to various prey types in both enclosed and open spaces and by selection of prey that occupy burrows or tunnels in soil. Atractaspis appears to represent the evolutionary endpoint of a functional conflict between envenomation and transport in which a rear-fanged envenomating system has been optimized at the expense of most, if not all, palatomaxillary transport function.