Electric field effects on water clusters (n = 3-5): systematic ab initio study of structures, energetics, and transition states

J Chem Phys. 2006 Mar 7;124(9):94308. doi: 10.1063/1.2173259.

Abstract

The structures, energetics, and transition states of water clusters (trimer to pentamer, n = 3-5) are investigated as a function of electric field by using ab initio calculations. With an increasing strength of the field, the most stable cyclic structures of trimer, tetramer, and pentamer open up to align their dipole moments along the direction of the field. For the lower strength (below 0.3 V/angstroms) of the electric field, the dipole moment of each water monomer is along the same direction with the field, while it retains the cyclic structure. For the higher strength of the field, to have a higher dipole moment for the cluster along the field direction, each cyclic structure opens up to form a linear chain or "water wire." We have investigated the transition state structures between the cyclic and linear forms for the field strengths of 0.3-0.4 V/angstroms where both cyclic and linear forms are energetically comparable.