Inhibition of gene expression in plant cells by expression of antisense RNA

Proc Natl Acad Sci U S A. 1986 Aug;83(15):5372-6. doi: 10.1073/pnas.83.15.5372.

Abstract

Due to the paucity of mutations in biochemical pathways in plants, an alternative approach to classical genetics was tested by expressing antisense RNA in plant cells. A series of plasmids was constructed with the bacterial gene for chloramphenicol acetyltransferase (EC 2.3.1.28) linked in either the sense or antisense orientation to several different plant gene promoters. Various ratios of sense and antisense chloramphenicol acetyltransferase gene plasmids were introduced into plant protoplasts by electric field-mediated DNA transfer ("electroporation") and the level of expression in each combination was monitored by chloramphenicol acetyltransferase assays. Transcription of antisense RNA was found to effectively block the expression of target genes. Thus, the observation that antisense RNA inhibits gene expression in bacteria and animal systems has been extended to the plant kingdom. Antisense RNA techniques have immediate practical applications in both basic research and in plant genetic engineering.