Signature proteins that are distinctive characteristics of Actinobacteria and their subgroups

Antonie Van Leeuwenhoek. 2006 Jul;90(1):69-91. doi: 10.1007/s10482-006-9061-2. Epub 2006 May 3.

Abstract

The Actinobacteria constitute one of the main phyla of Bacteria. Presently, no morphological and very few molecular characteristics are known which can distinguish species of this highly diverse group. In this work, we have analyzed the genomes of four actinobacteria (viz. Mycobacterium leprae TN, Leifsonia xyli subsp. xyli str. CTCB07, Bifidobacterium longum NCC2705 and Thermobifida fusca YX) to search for proteins that are unique to Actinobacteria. Our analyses have identified 233 actinobacteria-specific proteins, homologues of which are generally not present in any other bacteria. These proteins can be grouped as follows: (i) 29 proteins uniquely present in most sequenced actinobacterial genomes; (ii) 6 proteins present in almost all actinobacteria except Bifidobacterium longum and another 37 proteins absent in B. longum and few other species; (iii) 11 proteins which are mainly present in Corynebacterium, Mycobacterium and Nocardia (CMN) subgroup as well as Streptomyces, T. fusca and Frankia sp., but they are not found in Bifidobacterium and Micrococcineae; (iv) 8 proteins that are specific for T. fusca and Streptomyces species, plus 2 proteins also present in the Frankia species; (v) 13 proteins that are specific for the Corynebacterineae or the CMN group; (vi) 14 proteins only found in Mycobacterium and Nocardia; (vii) 24 proteins unique to different Mycobacterium species; (viii) 8 proteins specific to the Micrococcineae; (ix) 85 proteins which are distributed sporadically in actinobacterial species. Additionally, many examples of lateral gene transfer from Actinobacteria to Magnetospirillum magnetotacticum have also been identified. The identified proteins provide novel molecular means for defining and circumscribing the Actinobacteria phylum and a number of subgroups within it. The distribution of these proteins also provides useful information regarding interrelationships among the actinobacterial subgroups. Most of these proteins are of unknown function and studies aimed at understanding their cellular functions should reveal common biochemical and physiological characteristics unique to either all actinobacteria or particular subgroups of them. The identified proteins also provide potential targets for development of drugs that are specific for actinobacteria.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actinobacteria / classification*
  • Actinobacteria / genetics
  • Bacterial Proteins / classification*
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism
  • Genome, Bacterial*
  • Phylogeny

Substances

  • Bacterial Proteins