Evidence that feedback inhibition of NAD kinase controls responses to oxidative stress

Proc Natl Acad Sci U S A. 2006 May 16;103(20):7601-6. doi: 10.1073/pnas.0602494103. Epub 2006 May 8.

Abstract

Formation of NADP+ from NAD+ is catalyzed by NAD kinase (NadK; EC 2.7.1.23). Evidence is presented that NadK is the only NAD kinase of Salmonella enterica and is essential for growth. NadK is inhibited allosterically by NADPH and NADH. Without effectors, NadK exists as an equilibrium mixture of dimers and tetramers (KD = 1.0 +/- 0.8 mM) but is converted entirely to tetramers in the presence of the inhibitor NADPH. Comparison of NadK kinetic parameters with pool sizes of NADH and NADPH suggests that NadK is substantially inhibited during normal growth and, thus, can increase its activity greatly in response to temporary drops in the pools of inhibitory NADH and NADPH. The primary inhibitor is NADPH during aerobic growth and NADH during anaerobic growth. A model is proposed in which variation of NadK activity is central to the adjustment of pyridine nucleotide pools in response to changes in aeration, oxidative stress, and UV irradiation. It is suggested that each of these environmental factors causes a decrease in the level of reduced pyridine nucleotides, activates NadK, and increases production of NADP(H) at the expense of NAD(H). Activation of NadK may constitute a defensive response that resists loss of protective NADPH.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Feedback, Physiological*
  • Molecular Sequence Data
  • NAD / metabolism
  • NADP / metabolism
  • Oxidative Stress*
  • Phosphotransferases (Alcohol Group Acceptor) / antagonists & inhibitors*
  • Phosphotransferases (Alcohol Group Acceptor) / chemistry
  • Phosphotransferases (Alcohol Group Acceptor) / genetics
  • Phosphotransferases (Alcohol Group Acceptor) / metabolism*
  • Protein Conformation
  • Pyridines / metabolism
  • Salmonella enterica / enzymology*
  • Salmonella enterica / metabolism

Substances

  • Pyridines
  • NAD
  • NADP
  • Phosphotransferases (Alcohol Group Acceptor)
  • NAD kinase