Catalytic properties of silver nanoparticles supported on silica spheres

J Phys Chem B. 2005 Feb 10;109(5):1730-5. doi: 10.1021/jp046032g.

Abstract

In this work, we investigate the catalytic properties of silver nanoparticles supported on silica spheres. The technique to support silver particles on silica spheres effectively avoids flocculation of nanosized colloidal metal particles during a catalytic process in the solution, which allows one to carry out the successful catalytic reduction of dyes. The effects of electrolytes and surfactants on the catalytic properties of silver particles on silica have been investigated. It is found that the presence of surfactants depresses the catalytic activity of the silver particles to some extent by inhibiting the adsorption of reactants onto the surface of the particles. Electrolytes either increase the migration rate of reactants in the solution resulting in an increase in the catalytic reaction rate or inhibit the adsorption of reactants onto the surface of the silver particles leading to a loss in the activity of the metal particles.