Developmental expression of Na+ currents in mouse Purkinje neurons

Eur J Neurosci. 2006 Nov;24(9):2557-66. doi: 10.1111/j.1460-9568.2006.05139.x.

Abstract

As Purkinje neurons mature during postnatal development, they change from electrically quiescent to active and exhibit high frequency spontaneous action potentials. This change in electrical activity is determined by both alteration in ion channel expression and the acquisition of synaptic input. To gain a better understanding of the development the intrinsic electrical properties of these neurons, acutely isolated Purkinje neurons from mice aged postnatal day 4 (P4) to P18 were examined. This included recording action potential frequency, threshold, height and slope, and input resistance and capacitance. Changes in a number of these properties were observed, suggesting significant changes in voltage-gated Na(+) currents. Because voltage-gated Na(+) currents, including the transient, resurgent and persistent currents, are known to play important roles in generating spontaneous action potentials, the developmental changes in these currents were examined. A large increase in the density of transient current, resurgent current and persistent current was observed at times corresponding with changes in action potential properties. Interestingly, the developmental up-regulation of the persistent current and resurgent current occurred at rate which was faster than the up-regulation of the transient current. Moreover, the relative amplitudes of the persistent and resurgent currents increased in parallel, suggesting that they share a common basis. The data indicate that developmental up-regulation of Na(+) currents plays a key role in the acquisition of Purkinje neuron excitability.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials / physiology
  • Animals
  • Cerebellum / growth & development*
  • Cerebellum / metabolism*
  • Mice
  • Mice, Transgenic
  • Patch-Clamp Techniques
  • Purkinje Cells / metabolism*
  • Sodium / metabolism*
  • Sodium Channels / metabolism*

Substances

  • Sodium Channels
  • Sodium