Cochlear function in mice lacking the BK channel alpha, beta1, or beta4 subunits

J Biol Chem. 2007 Feb 2;282(5):3312-24. doi: 10.1074/jbc.M608726200. Epub 2006 Nov 29.

Abstract

Large conductance voltage- and calcium-activated potassium (BK) channels are important for regulating many essential cellular functions, from neuronal action potential shape and firing rate to smooth muscle contractility. In amphibians, reptiles, and birds, BK channels mediate the intrinsic frequency tuning of the cochlear hair cell by an electrical resonance mechanism. In contrast, inner hair cells of the mammalian cochlea are extrinsically tuned by accessory structures of the cochlea. Nevertheless, BK channels are present in inner hair cells and encode a fast activating outward current. To understand the role of the BK channel alpha and beta subunits in mammalian inner hair cells, we analyzed the morphology, physiology, and function of these cells from mice lacking the BK channel alpha (Slo-/-) and also the beta1 and beta4 subunits (beta1/4-/-). Beta1/4-/- mice showed normal subcellular localization, developmental acquisition, and expression of BK channels. Beta1/4-/- mice showed normal cochlear function as indicated by normal auditory brainstem responses and distortion product otoacoustic emissions. Slo-/- mice also showed normal cochlear function despite the absence of the BKalpha subunit and the absence of fast activating outward current from the inner hair cells. Moreover, microarray analyses revealed no compensatory changes in transcripts encoding ion channels or transporters in the cochlea from Slo-/- mice. Slo-/- mice did, however, show increased resistance to noise-induced hearing loss. These findings reveal the fundamentally different contribution of BK channels to nonmammalian and mammalian hearing and suggest that BK channels should be considered a target in the prevention of noise-induced hearing loss.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Cochlea / cytology
  • Cochlea / pathology
  • Cochlea / physiology*
  • Cochlea / physiopathology
  • Hearing / genetics
  • Hearing / physiology
  • Large-Conductance Calcium-Activated Potassium Channels / deficiency*
  • Large-Conductance Calcium-Activated Potassium Channels / genetics
  • Large-Conductance Calcium-Activated Potassium Channels / physiology*
  • Membrane Potentials
  • Mice
  • Mice, Knockout
  • Mice, Transgenic
  • Microscopy, Confocal
  • Protein Subunits / deficiency
  • Protein Subunits / genetics

Substances

  • Large-Conductance Calcium-Activated Potassium Channels
  • Protein Subunits