The rheumatoid arthritis shared epitope increases cellular susceptibility to oxidative stress by antagonizing an adenosine-mediated anti-oxidative pathway

Arthritis Res Ther. 2007;9(1):R5. doi: 10.1186/ar2111.

Abstract

We have recently demonstrated that the rheumatoid arthritis (RA) shared epitope (SE) acts as a ligand that triggers nitric oxide (NO) signaling in opposite cells. Given the known pro-oxidative effect of NO and the proposed role of oxidative stress in the pathogenesis of RA, this study explores whether SE-triggered signaling can increase cellular oxidative stress. cAMP levels, adenylyl cyclase activity, and protein kinase A activity were measured using commercial kits. Generation of reactive oxygen species (ROS) was quantified using the fluorochrome dichlorofluorescein diacetate. Oxidative DNA damage was quantified using the single-cell electrophoresis technique. Here, we report that cells exposed to cell surface SE-positive HLA-DR (human leukocyte antigen-DR) molecules, to cell-free recombinant proteins genetically engineered to express the SE motif, or to SE-positive synthetic peptide showed diminished cAMP-dependent signaling, increased ROS levels, and higher vulnerability to oxidative DNA damage. Introduction of single amino acid substitutions into SE-positive peptides revealed a consensus five-amino acid sequence motif of Q/R-K/R-X-X-A that is necessary and sufficient for SE-triggered signaling. The pro-oxidative effect of the SE could be reversed by inhibiting NO production. We conclude that the SE acts as a signaling ligand that activates an NO-mediated pro-oxidative pathway. The potential contribution of this signaling aberration to RA pathogenesis is discussed.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine / pharmacology*
  • Antioxidants / metabolism
  • Antioxidants / pharmacology*
  • Arthritis, Rheumatoid / immunology
  • Arthritis, Rheumatoid / metabolism*
  • B-Lymphocytes / immunology
  • B-Lymphocytes / metabolism*
  • Disease Susceptibility / immunology
  • Disease Susceptibility / metabolism
  • Epitopes, B-Lymphocyte / immunology
  • Epitopes, B-Lymphocyte / metabolism*
  • Humans
  • Oxidative Stress / drug effects
  • Oxidative Stress / physiology*
  • Reactive Oxygen Species / immunology
  • Reactive Oxygen Species / metabolism
  • Signal Transduction / drug effects
  • Signal Transduction / physiology*

Substances

  • Antioxidants
  • Epitopes, B-Lymphocyte
  • Reactive Oxygen Species
  • Adenosine