Nuclear DNA content estimates in green algal lineages: chlorophyta and streptophyta

Ann Bot. 2007 Apr;99(4):677-701. doi: 10.1093/aob/mcl294. Epub 2007 Feb 1.

Abstract

Background and aims: Consensus higher-level molecular phylogenies present a compelling case that an ancient divergence separates eukaryotic green algae into two major monophyletic lineages, Chlorophyta and Streptophyta, and a residuum of green algae, which have been referred to prasinophytes or micromonadophytes. Nuclear DNA content estimates have been published for less than 1% of the described green algal members of Chlorophyta, which includes multicellular green marine algae and freshwater flagellates (e.g. Chlamydomonas and Volvox). The present investigation summarizes the state of our knowledge and adds substantially to our database of C-values, especially for the streptophyte charophycean lineage which is the sister group of the land plants. A recent list of 2C nuclear DNA contents for isolates and species of green algae is expanded by 72 to 157.

Methods: The DNA-localizing fluorochrome DAPI (4',6-diamidino-2-phenylindole) and red blood cell (chicken erythrocytes) standard were used to estimate 2C values with static microspectrophotometry.

Key results: In Chlorophyta, including Chlorophyceae, Prasinophyceae, Trebouxiophyceae and Ulvophyceae, 2C DNA estimates range from 0.01 to 5.8 pg. Nuclear DNA content variation trends are noted and discussed for specific problematic taxon pairs, including Ulotrichales-Ulvales, and Cladophorales-Siphonocladales. For Streptophyta, 2C nuclear DNA contents range from 0.2 to 6.4 pg, excluding the highly polyploid Charales and Desmidiales, which have genome sizes of up to 14.8 and 46.8 pg, respectively. Nuclear DNA content data for Streptophyta superimposed on a contemporary molecular phylogeny indicate that early diverging lineages, including some members of Chlorokybales, Coleochaetales and Klebsormidiales, have genomes as small as 0.1-0.5 pg. It is proposed that the streptophyte ancestral nuclear genome common to both the charophyte and the embryophyte lineages can be characterized as 1C = 0.2 pg and 1n = 6.

Conclusions: These data will help pre-screen candidate species for the on-going construction of bacterial artificial chromosome nuclear genome libraries for land plant ancestors. Data for the prasinophyte Mesostigma are of particular interest as this alga reportedly most closely resembles the 'ancestral green flagellate'. Both mechanistic and ecological processes are discussed that could have produced the observed C-value increase of >100-fold in the charophyte green algae whereas the ancestral genome was conserved in the embryophytes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Nucleus / genetics
  • Chlorophyta / classification*
  • Chlorophyta / genetics
  • DNA, Algal / analysis*
  • Microspectrophotometry
  • Phylogeny*

Substances

  • DNA, Algal