Citric acid production by a novel Aspergillus niger isolate: II. Optimization of process parameters through statistical experimental designs

Bioresour Technol. 2007 Dec;98(18):3470-7. doi: 10.1016/j.biortech.2006.11.032. Epub 2007 Feb 20.

Abstract

In this work, sequential optimization strategy, based on statistical designs, was employed to enhance the production of citric acid in submerged culture. For screening of fermentation medium composition significantly influencing citric acid production, the two-level Plackett-Burman design was used. Under our experimental conditions, beet molasses and corn steep liquor were found to be the major factors of the acid production. A near optimum medium formulation was obtained using this method with increased citric acid yield by five-folds. Response surface methodology (RSM) was adopted to acquire the best process conditions. In this respect, the three-level Box-Behnken design was applied. A polynomial model was created to correlate the relationship between the three variables (beet molasses, corn steep liquor and inoculum concentration) and citric acid yield. Estimated optimum composition for the production of citric acid is as follows pretreated beet molasses, 240.1g/l; corn steep liquor, 10.5g/l; and spores concentration, 10(8)spores/ml. The optimum citric acid yield was 87.81% which is 14 times than the basal medium. The five level central composite design was used for outlining the optimum values of the fermentation factors initial pH, aeration rate and temperature on citric acid production. Estimated optimum values for the production of citric acid are as follows initial pH 4.0; aeration rate, 6500ml/min and fermentation temperature, 31.5 degrees C.

MeSH terms

  • Aspergillus niger / genetics*
  • Aspergillus niger / metabolism*
  • Citric Acid / metabolism*
  • Culture Media / chemistry
  • Fermentation / physiology*
  • Metals / chemistry*
  • Mutagenesis

Substances

  • Culture Media
  • Metals
  • Citric Acid