Myocardial phosphodiesterases and regulation of cardiac contractility in health and cardiac disease

Cardiovasc Drugs Ther. 2007 Jun;21(3):171-94. doi: 10.1007/s10557-007-6014-6. Epub 2007 Mar 21.

Abstract

Phosphodiesterase (PDE) inhibitors are potent cardiotonic agents used for parenteral inotropic support in heart failure. Contractile effects of these agents are mediated through cAMP-protein kinase A-induced stimulation of I (Ca2+) which ultimately results in increased Ca(2+)-induced sarcoplasmic reticulum Ca(2+) release. A number of additional effects such as increases in sarcoplasmic reticulum Ca(2+) stores, stimulation of reverse mode Na(+)-Ca(2+) exchange, direct or cAMP-mediated effects on sarcoplasmic reticulum ryanodine receptor, stimulation of the voltage-sensitive sarcoplasmic reticulum Ca(2+) release mechanism, as well as A(1) adenosine receptor blockade could contribute to positive inotropic responses to PDE inhibitors. Moreover, some PDE inhibitors exhibit Ca(2+) sensitizer properties as they could increase the affinity of troponin C Ca(2+)-binding sites as well as reduce Ca(2+) threshold for thin myofilament sliding and facilitate cross-bridge cycling. Inotropic responses to PDE inhibitors are significantly reduced in cardiac disease, an effect largely attributed to downregulation of cAMP-mediated signalling due to sustained sympathetic activation. Four PDE isoenzymes (PDE1, PDE2, PDE3 and PDE4) are present in myocardial tissue of various mammalian species, of which PDE3 and PDE4 are particularly involved in regulation of cardiac myocyte contraction. PDE cAMP-hydrolysing activity is preserved in compensated cardiac hypertrophy but significantly reduced in animal models of heart failure. However, clinical studies have not revealed any changes in distribution profile as well as kinetic and regulatory properties of myocardial PDEs in failing human hearts. A reduction of PDE inhibitors-induced contractile responses in heart failure has therefore been ascribed to reduced cAMP synthesis due to uncoupling of adenylyl cyclase from beta-adrenoreceptor. In cardiac myocytes, PDEs are targeted to distinct subcellular compartments by scaffolding proteins such as myomegalin, mAKAP and beta-arrestins. Over subcellular microdomains, cAMP hydrolysis by PDE3 and PDE4 allows to control the activity of local pools of protein kinase A and therefore the extent of protein kinase A-mediated phosphorylation of cellular proteins.

Publication types

  • Review

MeSH terms

  • Animals
  • Cyclic AMP / metabolism
  • Heart Diseases / drug therapy
  • Heart Diseases / enzymology*
  • Heart Diseases / physiopathology
  • Humans
  • Isoenzymes / metabolism
  • Kinetics
  • Myocardial Contraction / drug effects
  • Myocardial Contraction / physiology*
  • Myocardium / enzymology*
  • Myocardium / metabolism
  • Phosphodiesterase Inhibitors / pharmacology
  • Phosphodiesterase Inhibitors / therapeutic use
  • Phosphoric Diester Hydrolases / metabolism*

Substances

  • Isoenzymes
  • Phosphodiesterase Inhibitors
  • Cyclic AMP
  • Phosphoric Diester Hydrolases