Transgenic maize endosperm containing a milk protein has improved amino acid balance

Transgenic Res. 2008 Feb;17(1):59-71. doi: 10.1007/s11248-007-9081-3. Epub 2007 Mar 27.

Abstract

In order to meet the protein nutrition needs of the world population, greater reliance on plant protein sources will become necessary. The amino acid balance of most plant protein sources does not match the nutritional requirements of monogastric animals, limiting their nutritional value. In cereals, the essential amino acid lysine is deficient. Maize is a major component of human and animal diets worldwide and especially where sources of plant protein are in critical need such as sub-Saharan Africa. To improve the amino acid balance of maize, we developed transgenic maize lines that produce the milk protein alpha-lactalbumin in the endosperm. Lines in which the transgene was inherited as a single dominant genetic locus were identified. Sibling kernels with or without the transgene were compared to determine the effect of the transgene on kernel traits in lines selected for their high content of alpha-lactalbumin. Total protein content in endosperm from transgene positive kernels was not significantly different from total protein content in endosperm from transgene negative kernels in three out of four comparisons, whereas the lysine content of the lines examined was 29-47% greater in endosperm from transgene positive kernels. The content of some other amino acids was changed to a lesser extent. Taken together, these changes resulted in the transgenic endosperms having an improved amino acid balance relative to non-transgenic endosperms produced on the same ear. Kernel appearance, weight, density and zein content did not exhibit substantial differences in kernels expressing the transgene when compared to non-expressing siblings. Assessment of the antigenicity and impacts on animal health will be required in order to determine the overall value of this technology.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acids / analysis*
  • Animals
  • Base Sequence
  • DNA Primers / genetics
  • Lactalbumin / chemistry
  • Lactalbumin / genetics*
  • Nutritive Value
  • Phenotype
  • Plants, Genetically Modified
  • Swine / genetics
  • Transformation, Genetic
  • Zea mays / chemistry*
  • Zea mays / genetics*
  • Zein / analysis

Substances

  • Amino Acids
  • DNA Primers
  • Zein
  • Lactalbumin