Dynamics of crowd disasters: an empirical study

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Apr;75(4 Pt 2):046109. doi: 10.1103/PhysRevE.75.046109. Epub 2007 Apr 18.

Abstract

Many observations of the dynamics of pedestrian crowds, including various self-organization phenomena, have been successfully described by simple many-particle models. For ethical reasons, however, there is a serious lack of experimental data regarding crowd panic. Therefore, we have analyzed video recordings of the crowd disaster in Mina/Makkah during the Hajj in 1426H on 12 January 2006. They reveal two subsequent, sudden transitions from laminar to stop-and-go and "turbulent" flows, which question many previous simulation models. While the transition from laminar to stop-and-go flows supports a recent model of bottleneck flows [D. Helbing, Phys. Rev. Lett. 97, 168001 (2006)], the subsequent transition to turbulent flow is not yet well understood. It is responsible for sudden eruptions of pressure release comparable to earthquakes, which cause sudden displacements and the falling and trampling of people. The insights of this study into the reasons for critical crowd conditions are important for the organization of safer mass events. In particular, they allow one to understand where and when crowd accidents tend to occur. They have also led to organizational changes, which have ensured a safe Hajj in 1427H.