Organic electronic devices and their functional interfaces

Chemphyschem. 2007 Jul 16;8(10):1438-55. doi: 10.1002/cphc.200700177.

Abstract

A most appealing feature of the development of (opto)electronic devices based on conjugated organic materials is the highly visible link between fundamental research and technological advances. Improved understanding of organic material properties can often instantly be implemented in novel device architectures, which results in rapid progress in the performance and functionality of devices. An essential ingredient for this success is the strong interdisciplinary nature of the field of organic electronics, which brings together experts in chemistry, physics, and engineering, thus softening or even removing traditional boundaries between the disciplines. Naturally, a thorough comprehension of all properties of organic insulators, semiconductors, and conductors is the goal of current efforts. Furthermore, interfaces between dissimilar materials-organic/organic and organic/inorganic-are inherent in organic electronic devices. It has been recognized that these interfaces are a key for device function and efficiency, and detailed investigations of interface physics and chemistry are at the focus of research. Ultimately, a comprehensive understanding of phenomena at interfaces with organic materials will improve the rational design of highly functional organic electronic devices.