Osteoblasts and bone formation

Acta Reumatol Port. 2007 Apr-Jun;32(2):103-10.

Abstract

Bone is constantly being remodelled in a dynamic process where osteoblasts are responsible for bone formation and osteoclasts for its resorption. Osteoblasts are specialized mesenchymal cells that undergo a process of maturation where genes like core-binding factor alpha1 (Cbfa1) and osterix (Osx) play a very important role. Moreover, it was found recently that Wnt/ beta-catenin pathway plays a part on osteoblast differentiation and proliferation. In fact, mutations on some of the proteins involved in this pathway, like the low-density lipoprotein receptor related protein 5/6 (LRP5/6) lead to bone diseases. Osteoblast have also a role in regulation of bone resorption through receptor activator of nuclear factor-kappaB (RANK) ligand (RANKL), that links to its receptor, RANK, on the surface of pre-osteoblast cells, inducing their differentiation and fusion. On the other hand, osteoblasts secrete a soluble decoy receptor (osteoprotegerin, OPG) that blocks RANK/RANKL interaction by binding to RANKL and, thus, prevents osteoclast differentiation and activation. Therefore, the balance between RANKL and OPG determines the formation and activity of osteoclasts. Another factor that influences bone mass is leptin, a hormone produced by adipocytes that have a dual effect. It can act through the central nervous system and diminish osteoblasts activity, or can have an osteogenic effect by binding directly to its receptors on the surface of osteoblast cells.

Publication types

  • Review

MeSH terms

  • Humans
  • Leptin / physiology
  • Osteoblasts / physiology*
  • Osteogenesis*
  • RANK Ligand / physiology

Substances

  • Leptin
  • RANK Ligand
  • TNFSF11 protein, human