Evaluating drug efficacy and toxicology in three dimensions: using synthetic extracellular matrices in drug discovery

Acc Chem Res. 2008 Jan;41(1):139-48. doi: 10.1021/ar7000827. Epub 2007 Jul 27.

Abstract

The acceptance of the new paradigm of 3-D cell culture is currently constrained by the lack of a biocompatible material in the marketplace that offers ease of use, experimental flexibility, and a seamless transition from in vitro to in vivo applications. I describe the development of a covalently cross-linked mimic of the extracellular matrix (sECM), now commercially available, for 3-D culture of cells in vitro and for translational use in vivo. These bio-inspired, biomimetic materials can be used "as is" in drug discovery, toxicology, cell banking, and, ultimately, medicine. For cell therapy and the development of clinical combination products, the sECM biomaterials must be highly reproducible, manufacturable, approvable, and affordable. To obtain integrated, functional, multicellular systems that recapitulate tissues and organs, the needs of the true end users, physicians and patients, must dictate the key design criteria. In chemical terms, the sECM consists of chemically-modified hyaluronan (HA), other glycosaminoglycans (GAGs), and ECM polypeptides containing thiol residues that are cross-linked using biocompatible polyvalent electrophiles. For example, co-cross-linking the semisynthetic thiol-modified HA-like GAG with thiol-modified gelatin produces Extracel as a hydrogel. This hydrogel may be formed in situ in the presence of cells or tissues to provide an injectable cell-delivery vehicle. Alternately, an Extracel hyrogel can be lyophilized to create a macroporous scaffold, which can then be employed for 3-D cell culture. In this Account, we describe four applications of sECMs that are relevant to the evaluation of drug efficacy and drug toxicity. First, the uses of sECMs to promote both in vitro and in vivo growth of healthy cellularized 3-D tissues are summarized. Primary or cell-line-derived cells, including fibroblasts, chondrocytes, hepatocytes, adult and embryonic stem cells, and endothelial and epithelial cells have been used. Second, primary hepatocytes retain their biochemical phenotypes and achieve greater longevity in 3-D culture in Extracel. This constitutes a new 3-D method for rapid evaluation of hepatotoxicity in vitro. Third, cancer cell lines are readily grown in 3-D culture in Extracel, offering a method for rapid evaluation of new anticancer agents in a more physiological ex vivo tumor model. This system has been used to evaluate signal transduction modifiers obtained from our research on lipid signaling. Fourth, a new "tumor engineering" xenograft model uses orthotopic injection of Extracel-containing tumor cells in nude mice. This approach allows production of patient-specific mice using primary human tumor samples and offers a superior metastatic cancer model. Future applications of the injectable cell delivery and 3-D cell culture methods include chemoattractant and angiogenesis assays, high-content automated screening of chemical libraries, pharmacogenomic and toxicogenomic studies with cultured organoids, and personalized treatment models. In summary, the sECM technology offers a versatile "translational bridge" from in vitro to in vivo to facilitate drug discovery in both academic and pharmaceutical laboratories.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacokinetics
  • Antineoplastic Agents / therapeutic use*
  • Cell Culture Techniques
  • Drug Design*
  • Extracellular Matrix / chemistry
  • Extracellular Matrix / metabolism*
  • Humans
  • Molecular Structure
  • Neoplasms / drug therapy*
  • Tissue Engineering / methods*
  • Xenograft Model Antitumor Assays

Substances

  • Antineoplastic Agents