Spatial and temporal expression of perlecan in the early chick embryo

Cells Tissues Organs. 2007;186(4):243-56. doi: 10.1159/000107948. Epub 2007 Sep 4.

Abstract

Perlecan is a major heparan sulfate proteoglycan that binds growth factors and interacts with various extracellular matrix proteins and cell surface molecules. The expression and spatiotemporal distribution of perlecan was studied by RT-PCR, immunoprecipitation and immunofluorescence in the chick embryo from stages X (morula) to HH17 (29 somites). Combined RT-PCR and immunohistochemistry demonstrated the expression of perlecan as early as stage X and its presence may be fundamental to the first basement membrane assembly on the epiblast ventral surface at stage XIII (blastula). Perlecan fluorescence was intense in the cells ingressing through the primitive streak and was strong lining the epiblast ventral surface lateral to the streak at stage HH3-4 (gastrula). At stage HH5-6 (neurula), perlecan fluorescence was low in the neuroepithelium and stronger in the apical surface of the neural plate. At stage HH10-11 (12 somites), perlecan fluorescence was intense in the neuroepithelium and was then essentially nondetectable in the neuroepithelium, and the intensity had shifted to the basement membranes of encephalic vesicles by stage HH17. Perlecan immunofluorescence was intense in neural crest cells, strong in pharyngeal arches, intense in thymus and lung rudiments, intense in aortic arches and in dorsal aorta, strong in lens and retina and intense in intraretinal space and in optic stalk, strong in the dorsal mesocardium, myocardium and endocardium, strong in dermomyotome, low in sclerotome in somites, intense in mesonephric duct and tubule rudiments, intense in the lining of the gut luminal surface. Inhibition of the function of perlecan by blocking antibodies showed that perlecan is crucial for maintaining basement membrane integrity which mediates the epithelialization, adhesive separation and maintenance of neuroepithelium in brain, somite epithelialization, and tissue architecture during morphogenesis of the heart tube, dorsal aorta and gut. An intriguing possibility is that perlecan, as a signaling molecule that modulates the activity of growth factors and cytokines, participates in the signaling pathways that guide gastrulation movements and neural crest cell migration, proliferation and survival, cardiac cell proliferation and paraxial mesoderm (somitic) cell proliferation and segmentation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Chick Embryo* / cytology
  • Chick Embryo* / embryology
  • Chick Embryo* / growth & development
  • Chick Embryo* / metabolism
  • Gene Expression Regulation, Developmental
  • Heparan Sulfate Proteoglycans / genetics
  • Heparan Sulfate Proteoglycans / metabolism*
  • Morphogenesis
  • RNA, Messenger / metabolism
  • Tissue Distribution

Substances

  • Heparan Sulfate Proteoglycans
  • RNA, Messenger
  • perlecan