A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks

Circ Res. 2008 Jan 4;102(1):77-85. doi: 10.1161/CIRCRESAHA.107.159475. Epub 2007 Oct 25.

Abstract

It has been shown that stromal-vascular fraction isolated from adipose tissues contains an abundance of CD34+ cells. Histological analysis of adipose tissue revealed that CD34+ cells are widely distributed among adipocytes and are predominantly associated with vascular structures. The majority of CD34+ cells from freshly isolated stromal-vascular fraction were CD31-/CD144- and could be separated from a distinct population of CD34+/CD31+/CD144+ (endothelial) cells by differential attachment on uncoated plastic. The localization of CD34+ cells within adipose tissue suggested that the nonendothelial population of these cells occupied a pericytic position. Analysis of surface and intracellular markers of the freshly isolated CD34+/CD31-/CD144- adipose-derived stromal cells (ASCs) showed that >90% coexpress mesenchymal (CD10, CD13, and CD90), pericytic (chondroitin sulfate proteoglycan, CD140a, and CD140b), and smooth muscle (alpha-actin, caldesmon, and calponin) markers. ASCs demonstrated polygonal self-assembly on Matrigel, as did human microvascular endothelial cells. Coculture of ASCs with human microvascular endothelial cells on Matrigel led to cooperative network assembly, with enhanced stability of endothelial networks and preferential localization of ASCs on the abluminal side of cords. Bidirectional paracrine interaction between these cells was supported by identification of angiogenic factors (vascular endothelial growth factor, hepatocyte growth factor, basic fibroblast growth factor), inflammatory factors (interleukin-6 and -8 and monocyte chemoattractant protein-1 and -2), and mobilization factors (macrophage colony-stimulating factor and granulocyte/macrophage colony-stimulating factor) in media conditioned by CD34+ ASCs, as well a robust mitogenic response of ASCs to basic fibroblast growth factor, epidermal growth factor, and platelet-derived growth factor-BB, factors produced by endothelial cells. These results demonstrate for the first time that the majority of adipose-derived adherent CD34+ cells are resident pericytes that play a role in vascular stabilization by mutual structural and functional interaction with endothelial cells.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adipose Tissue / cytology*
  • Antigens, CD / analysis
  • Antigens, CD34*
  • Cell Communication / physiology
  • Coculture Techniques
  • Endothelium, Vascular / cytology*
  • Humans
  • Mesenchymal Stem Cells / cytology
  • Multipotent Stem Cells / cytology
  • Pericytes / cytology
  • Stromal Cells / cytology*

Substances

  • Antigens, CD
  • Antigens, CD34