Suppression of renal cell carcinoma growth by inhibition of Notch signaling in vitro and in vivo

J Clin Invest. 2008 Jan;118(1):217-28. doi: 10.1172/JCI32086.

Abstract

Loss of the tumor suppressor gene von Hippel-Lindau (VHL) plays a key role in the oncogenesis of clear cell renal cell carcinoma (CCRCC). The loss leads to stabilization of the HIF transcription complex, which induces angiogenic and mitogenic pathways essential for tumor formation. Nonetheless, additional oncogenic events have been postulated to be required for the formation of CCRCC tumors. Here, we show that the Notch signaling cascade is constitutively active in human CCRCC cell lines independently of the VHL/HIF pathway. Blocking Notch signaling resulted in attenuation of proliferation and restrained anchorage-independent growth of CCRCC cell lines. Using siRNA targeting the different Notch receptors established that the growth-promoting effects of the Notch signaling pathway were attributable to Notch-1 and that Notch-1 knockdown was accompanied by elevated levels of the negative cell-cycle regulators p21 Cip1 and/or p27 Kip1. Treatment of nude mice with an inhibitor of Notch signaling potently inhibited growth of xenotransplanted CCRCC cells. Moreover, Notch-1 and the Notch ligand Jagged-1 were expressed at significantly higher levels in CCRCC tumors than in normal human renal tissue, and the growth of primary CCRCC cells was attenuated upon inhibition of Notch signaling. These findings indicate that the Notch cascade may represent a novel and therapeutically accessible pathway in CCRCC.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Basic Helix-Loop-Helix Transcription Factors / genetics
  • Basic Helix-Loop-Helix Transcription Factors / metabolism
  • Calcium-Binding Proteins / genetics
  • Calcium-Binding Proteins / metabolism
  • Carcinoma, Renal Cell / drug therapy
  • Carcinoma, Renal Cell / genetics
  • Carcinoma, Renal Cell / metabolism*
  • Carcinoma, Renal Cell / pathology
  • Cell Line, Tumor
  • Cell Transformation, Neoplastic / drug effects
  • Cell Transformation, Neoplastic / genetics
  • Cell Transformation, Neoplastic / metabolism
  • Cell Transformation, Neoplastic / pathology
  • Cyclin-Dependent Kinase Inhibitor p21 / genetics
  • Cyclin-Dependent Kinase Inhibitor p21 / metabolism
  • Cyclin-Dependent Kinase Inhibitor p27
  • Female
  • Humans
  • Intercellular Signaling Peptides and Proteins / genetics
  • Intercellular Signaling Peptides and Proteins / metabolism
  • Intracellular Signaling Peptides and Proteins / genetics
  • Intracellular Signaling Peptides and Proteins / metabolism
  • Jagged-1 Protein
  • Male
  • Membrane Proteins / genetics
  • Membrane Proteins / metabolism
  • Mice
  • Mice, Nude
  • Neoplasm Transplantation
  • RNA, Small Interfering / genetics
  • RNA, Small Interfering / pharmacology
  • Receptor, Notch1 / antagonists & inhibitors
  • Receptor, Notch1 / genetics
  • Receptor, Notch1 / metabolism*
  • Serrate-Jagged Proteins
  • Signal Transduction* / drug effects
  • Signal Transduction* / genetics
  • Von Hippel-Lindau Tumor Suppressor Protein / genetics
  • Von Hippel-Lindau Tumor Suppressor Protein / metabolism

Substances

  • Basic Helix-Loop-Helix Transcription Factors
  • CDKN1A protein, human
  • CDKN1B protein, human
  • Calcium-Binding Proteins
  • Cyclin-Dependent Kinase Inhibitor p21
  • Intercellular Signaling Peptides and Proteins
  • Intracellular Signaling Peptides and Proteins
  • JAG1 protein, human
  • Jag1 protein, mouse
  • Jagged-1 Protein
  • Membrane Proteins
  • NOTCH1 protein, human
  • RNA, Small Interfering
  • Receptor, Notch1
  • Serrate-Jagged Proteins
  • Cyclin-Dependent Kinase Inhibitor p27
  • Von Hippel-Lindau Tumor Suppressor Protein
  • VHL protein, human