Haplotype mapping of a diploid non-meiotic organism using existing and induced aneuploidies

PLoS Genet. 2008 Jan;4(1):e1. doi: 10.1371/journal.pgen.0040001. Epub 2007 Nov 20.

Abstract

Haplotype maps (HapMaps) reveal underlying sequence variation and facilitate the study of recombination and genetic diversity. In general, HapMaps are produced by analysis of Single-Nucleotide Polymorphism (SNP) segregation in large numbers of meiotic progeny. Candida albicans, the most common human fungal pathogen, is an obligate diploid that does not appear to undergo meiosis. Thus, standard methods for haplotype mapping cannot be used. We exploited naturally occurring aneuploid strains to determine the haplotypes of the eight chromosome pairs in the C. albicans laboratory strain SC5314 and in a clinical isolate. Comparison of the maps revealed that the clinical strain had undergone a significant amount of genome rearrangement, consisting primarily of crossover or gene conversion recombination events. SNP map haplotyping revealed that insertion and activation of the UAU1 cassette in essential and non-essential genes can result in whole chromosome aneuploidy. UAU1 is often used to construct homozygous deletions of targeted genes in C. albicans; the exact mechanism (trisomy followed by chromosome loss versus gene conversion) has not been determined. UAU1 insertion into the essential ORC1 gene resulted in a large proportion of trisomic strains, while gene conversion events predominated when UAU1 was inserted into the non-essential LRO1 gene. Therefore, induced aneuploidies can be used to generate HapMaps, which are essential for analyzing genome alterations and mitotic recombination events in this clonal organism.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Alleles
  • Aneuploidy*
  • Base Sequence
  • Candida albicans / cytology*
  • Candida albicans / genetics*
  • Candida albicans / isolation & purification
  • Chromosome Mapping
  • Chromosomes, Fungal / genetics
  • Diploidy*
  • Haplotypes / genetics*
  • Loss of Heterozygosity
  • Meiosis
  • Molecular Sequence Data
  • Polymorphism, Single Nucleotide / genetics
  • Recombination, Genetic / genetics
  • Trisomy