l-Galactono-gamma-lactone dehydrogenase from Arabidopsis thaliana, a flavoprotein involved in vitamin C biosynthesis

FEBS J. 2008 Feb;275(4):713-26. doi: 10.1111/j.1742-4658.2007.06233.x. Epub 2008 Jan 10.

Abstract

l-Galactono-1,4-lactone dehydrogenase (GALDH; ferricytochrome c oxidoreductase; EC 1.3.2.3) is a mitochondrial flavoenzyme that catalyzes the final step in the biosynthesis of vitamin C (l-ascorbic acid) in plants. In the present study, we report on the biochemical properties of recombinant Arabidopsis thaliana GALDH (AtGALDH). AtGALDH oxidizes, in addition to l-galactono-1,4-lactone (K(m) = 0.17 mm, k(cat) = 134 s(-1)), l-gulono-1,4-lactone (K(m) = 13.1 mm, k(cat) = 4.0 s(-1)) using cytochrome c as an electron acceptor. Aerobic reduction of AtGALDH with the lactone substrate generates the flavin hydroquinone. The two-electron reduced enzyme reacts poorly with molecular oxygen (k(ox) = 6 x 10(2) m(-1).s(-1)). Unlike most flavoprotein dehydrogenases, AtGALDH forms a flavin N5 sulfite adduct. Anaerobic photoreduction involves the transient stabilization of the anionic flavin semiquinone. Most aldonolactone oxidoreductases contain a histidyl-FAD as a covalently bound prosthetic group. AtGALDH lacks the histidine involved in covalent FAD binding, but contains a leucine instead (Leu56). Leu56 replacements did not result in covalent flavinylation but revealed the importance of Leu56 for both FAD-binding and catalysis. The Leu56 variants showed remarkable differences in Michaelis constants for both l-galactono-1,4-lactone and l-gulono-1,4-lactone and released their FAD cofactor more easily than wild-type AtGALDH. The present study provides the first biochemical characterization of AtGALDH and some active site variants. The role of GALDH and the possible involvement of other aldonolactone oxidoreductases in the biosynthesis of vitamin C in A. thaliana are also discussed.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Arabidopsis / enzymology*
  • Arabidopsis / genetics
  • Arabidopsis Proteins / chemistry
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / metabolism*
  • Ascorbic Acid / biosynthesis*
  • Catalysis
  • Electrophoresis, Polyacrylamide Gel
  • Flavoproteins / chemistry
  • Flavoproteins / genetics
  • Flavoproteins / metabolism*
  • Lactones / metabolism
  • Models, Biological
  • Molecular Sequence Data
  • Mutagenesis, Site-Directed
  • Mutation
  • Oxidation-Reduction
  • Oxidoreductases Acting on CH-CH Group Donors / chemistry
  • Oxidoreductases Acting on CH-CH Group Donors / genetics
  • Oxidoreductases Acting on CH-CH Group Donors / metabolism*
  • Sequence Homology, Amino Acid

Substances

  • Arabidopsis Proteins
  • Flavoproteins
  • Lactones
  • Oxidoreductases Acting on CH-CH Group Donors
  • galactonolactone dehydrogenase
  • Ascorbic Acid