Divergent adaptation promotes reproductive isolation among experimental populations of the filamentous fungus Neurospora

BMC Evol Biol. 2008 Jan 31:8:35. doi: 10.1186/1471-2148-8-35.

Abstract

Background: An open, focal issue in evolutionary biology is how reproductive isolation and speciation are initiated; elucidation of mechanisms with empirical evidence has lagged behind theory. Under ecological speciation, reproductive isolation between populations is predicted to evolve incidentally as a by-product of adaptation to divergent environments. The increased genetic diversity associated with interspecific hybridization has also been theorized to promote the development of reproductive isolation among independent populations. Using the fungal model Neurospora, we founded experimental lineages from both intra- and interspecific crosses, and evolved them in one of two sub-optimal, selective environments. We then measured the influence that initial genetic diversity and the direction of selection (parallel versus divergent) had on the evolution of reproductive isolation.

Results: When assayed in the selective environment in which they were evolved, lineages typically had greater asexual fitness than the progenitors and the lineages that were evolved in the alternate, selective environment. Assays for reproductive isolation showed that matings between lineages that were adapted to the same environment had greater sexual reproductive success than matings between lineages that were adapted to different environments. Evidence of this differential reproductive success was observed at two stages of the sexual cycle. For one of the two observed incompatibility phenotypes, results from genetic analyses were consistent with a two-locus, two-allele model with asymmetric (gender-specific), antagonistic epistasis. The effects of divergent adaptation on reproductive isolation were more pronounced for populations with greater initial genetic variation.

Conclusion: Divergent selection resulted in divergent adaptation and environmental specialization, consistent with fixation of different alleles in different environments. When brought together by mating, these alleles interacted negatively and had detrimental effects on sexual reproductive success, in agreement with the Dobzhansky-Muller model of genetic incompatibilities. As predicted by ecological speciation, greater reproductive isolation was observed among divergent-adapted lineages than among parallel-adapted lineages. These results support that, given adequate standing genetic variation, divergent adaptation can indirectly cause the evolution of reproductive isolation, and eventually lead to speciation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Physiological / genetics*
  • Evolution, Molecular
  • Genetic Variation*
  • Genetics, Population
  • Neurospora / genetics*
  • Neurospora / growth & development
  • Phenotype
  • Population Growth