Alkaline Phosphatases : Structure, substrate specificity and functional relatedness to other members of a large superfamily of enzymes

Purinergic Signal. 2006 Jun;2(2):335-41. doi: 10.1007/s11302-005-5435-6. Epub 2006 Jun 17.

Abstract

Our knowledge of the structure and function of alkaline phosphatases has increased greatly in recent years. The crystal structure of the human placental isozyme has enabled us to probe salient features of the mammalian enzymes that differ from those of the bacterial enzymes. The availability of knockout mice deficient in each of the murine alkaline phosphatase isozymes has also given deep insights into their in vivo role. This has been particularly true for probing the biological role of bone alkaline phosphatase during skeletal mineralization. Due to space constraints this mini-review focuses exclusively on structural and functional features of mammalian alkaline phosphatases as identified by crystallography and probed by site-directed mutagenesis and kinetic analysis. An emphasis is also placed on the substrate specificity of alkaline phosphatases, their catalytic properties as phosphohydrolases as well as phosphodiesterases and their structural and functional relatedness to a large superfamily of enzymes that includes nucleotide pyrophosphatase/phosphodiesterase.