Beneficial effects of potassium on human health

Physiol Plant. 2008 Aug;133(4):725-35. doi: 10.1111/j.1399-3054.2007.01033.x.

Abstract

Until recently, humans consumed a diet high in potassium. However, with the increasing consumption of processed food, which has potassium removed, combined with a reduction in the consumption of fruits and vegetables, there has been a large decrease in potassium intake which now, in most developed countries, averages around 70 mmol day-1, i.e. only one third of our evolutionary intake. Much evidence shows that increasing potassium intake has beneficial effects on human health. Epidemiological and clinical studies show that a high-potassium diet lowers blood pressure in individuals with both raised blood pressure and average population blood pressure. Prospective cohort studies and outcome trials show that increasing potassium intake reduces cardiovascular disease mortality. This is mainly attributable to the blood pressure-lowering effect and may also be partially because of the direct effects of potassium on the cardiovascular system. A high-potassium diet may also prevent or at least slow the progression of renal disease. An increased potassium intake lowers urinary calcium excretion and plays an important role in the management of hypercalciuria and kidney stones and is likely to decrease the risk of osteoporosis. Low serum potassium is strongly related to glucose intolerance, and increasing potassium intake may prevent the development of diabetes that occurs with prolonged treatment with thiazide diuretics. Reduced serum potassium increases the risk of lethal ventricular arrhythmias in patients with ischaemic heart disease, heart failure and left ventricular hypertrophy, and increasing potassium intake may prevent this. The best way to increase potassium intake is to increase the consumption of fruits and vegetables.

Publication types

  • Review

MeSH terms

  • Blood Pressure / drug effects
  • Cardiovascular Diseases / metabolism
  • Health*
  • Humans
  • Potassium / metabolism*
  • Potassium / pharmacology

Substances

  • Potassium