Biofunctionalization of biomaterials for accelerated in situ endothelialization: a review

Biomacromolecules. 2008 Nov;9(11):2969-79. doi: 10.1021/bm800681k. Epub 2008 Oct 3.

Abstract

The higher patency rates of cardiovascular implants, including vascular bypass grafts, stents, and heart valves are related to their ability to inhibit thrombosis, intimal hyperplasia, and calcification. In native tissue, the endothelium plays a major role in inhibiting these processes. Various bioengineering research strategies thereby aspire to induce endothelialization of graft surfaces either prior to implantation or by accelerating in situ graft endothelialization. This article reviews potential bioresponsive molecular components that can be incorporated into (and/or released from) biomaterial surfaces to obtain accelerated in situ endothelialization of vascular grafts. These molecules could promote in situ endothelialization by the mobilization of endothelial progenitor cells (EPC) from the bone marrow, encouraging cell-specific adhesion (endothelial cells (EC) and/or EPC) to the graft and, once attached, by controlling the proliferation and differentiation of these cells. EC and EPC interactions with the extracellular matrix continue to be a principal source of inspiration for material biofunctionalization, and therefore, the latest developments in understanding these interactions will be discussed.

Publication types

  • Review

MeSH terms

  • Biocompatible Materials / chemistry*
  • Endothelial Cells / cytology*
  • Endothelium, Vascular / cytology
  • Humans
  • Prostheses and Implants*

Substances

  • Biocompatible Materials