Engineered protein scaffolds as next-generation antibody therapeutics

Curr Opin Chem Biol. 2009 Jun;13(3):245-55. doi: 10.1016/j.cbpa.2009.04.627. Epub 2009 Jun 6.

Abstract

Antibodies have been the paradigm of binding proteins with desired specificities for more than one century and during the past decade their recombinant or humanized versions have entered clinical application with remarkable success. Meanwhile, a new generation of receptor proteins was born, which is derived from small and robust non-immunoglobulin "scaffolds" that can be equipped with prescribed binding functions using the methods of combinatorial protein design. Their ongoing development does not only provide valuable insights into the principles of molecular recognition and protein structure-function relationships but also yields novel reagents for medical use. This technology goes hand in hand with our expanding knowledge about the molecular pathologies of cancer, immunological, and infectious diseases. Currently, questions regarding the choice of suitable medically relevant targets with regard to a certain protein scaffold, the methodology for engineering high affinity, arming with effector functions, routes of administration, plasma half-life, and immunogenicity are in the focus. While many protein scaffolds have been proposed during the past years, the technology shows a trend toward consolidation with a smaller set of systems that are being applied against multiple targets and in different settings, with emphasis on the development of drug candidates for therapy or in vivo diagnostics: Adnectins, Affibodies, Anticalins, DARPins, and engineered Kunitz-type inhibitors, among others. Only few data from early clinical studies are available yet, but many more are likely to come in the near future, thus providing a growing basis for assessing the therapeutic potential--but possibly also some limitations--of this exciting new class of protein drugs.

Publication types

  • Review

MeSH terms

  • Antibodies / genetics
  • Antibodies / pharmacology
  • Antibodies / therapeutic use*
  • Drug Discovery / methods*
  • Models, Molecular
  • Protein Binding
  • Protein Engineering / methods*
  • Receptors, Cell Surface / antagonists & inhibitors

Substances

  • Antibodies
  • Receptors, Cell Surface