Natively unfolded proteins present a challenge for structure determination because they populate highly heterogeneous ensembles of conformations. A useful source of structural information about these states is provided by paramagnetic relaxation enhancement measurements by nuclear magnetic resonance spectroscopy, from which long-range interatomic distances can be estimated. Here we describe a method for using such distances as restraints in molecular dynamics simulations to obtain a mapping of the free energy landscapes of natively unfolded proteins. We demonstrate the method in the case of alpha-synuclein and validate the results by a comparison with electron transfer measurements. Our findings indicate that our procedure provides an accurate estimate of the relative statistical weights of the different conformations populated by alpha-synuclein in its natively unfolded state.